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3-77z  ABSTRACT 

A method of solving the problem Ax = f ,  where A i s  

a l i n e a r  operator,  using random i t e r a t i o n  processes i s  

given. 

The extensive use of program-controlled high-speed computers 

has lead  t o  re-evaluations i n  the  theory of approximation methods. 

The proper t ies  of these  methods - such as the  s impl ic i ty  of t h e i r  

computational pa t te rn ,  which reduces the  programming volume, and 

t h e i r  minimum load on the  computer memory - have acquired grea t  impor- 

tance. 

t he  approximation process has a l so  changed somewhat, and it  is on t h i s  

convergence rate t h a t  t he  number of computational operations d i r e c t l y  

depends. 

/1088* 

The approach t o  an evaluation of  t h e  rate of convergence of 

As a rule, a high ca lcu la t ing  speed makes a s i g n i f i c a n t  number 

of consecutive approximations possible,  and asymptotic estimates 

play a decis ive r o l e  i n  e v a l u a t i n g t h e  convergence rate. 

savings i n  machine t i m e ,  i t  is  necessary t h a t  t h e  e r r o r  i n  the  approxi- 

m a t e  so lu t ions  decrease su f f i c i en t ly  rapidly a t  the  la te  s tages  of the  

For a 

*Note: Numbers i n  t h e  margin ind ica te  pagination i n  the  o r i g i n a l  
foreign text. 
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approximation process. 

so lu t ions  i n  t h e  i n i t i a l  s t age  of the  process,  however, are of 

no essential importance, unless they a f f e c t  t h e  total  ex ten t  of 

t h e  computations. 

Signif icant  deviat ions i n  the  approximate 

Under these  conditions,  i t  seems t o  us, approximation methods 

which are based on random processes have a r i g h t  t o  exist, i.e., 

not  only the  Monte-Carlo method i n  the  s t r i c t  sense - where the  

mathematical problem i t s e l f  is  replaced by an equivalent problem 

involving random quant i t ies .  Th i s  a l so  includes the  methods of 

so lu t ion ,  which do not change the  formulation of t h e  problem, i n  

which the  successive approximations represent  the  r ea l i za t ion  of 

some spec ia l ly  se lec ted  random process leading t o  a computation 

of t h e  approximate so lu t ion  with the required accuracy and with a 

considerable degree of  probabi l i ty .  

One of these methods is proposed f o r  t he  reader 's  considera- 

t ion.  

1. I t e ra t ion  Processes 

L e t  us examine t h e  inhomogeneous l i n e a r  equation 

Ax = f ,  

where A is a l i n e a r ,  self-conjugate, pos i t i ve  d e f i n i t e ,  and restric- 

t ed  operator.  L e t  us assume t h a t  w e  know t h e  limits of i ts  spectrum 

1)f (x, 2.) < (AL-, L) -s .I1 (z, .c). 

The i t e r a t i o n  processes are formed as follows. On t he  b a s i s  of  

an approximate so lu t ion  of XO, t h e  successive approximations are 
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ca lcu la ted  from formula 

(1.1) Z , , + l  = %,I f x,r,,* 

where rn = f - AXn is the  res idua l  of the nth approximation. 

If w e  designate the  desired solut ion by x*, the  e r r o r  of t he  

n th  approximation nn = % - x* i s  eas i ly  estimated. It follows t h a t  

from Formula (1.1) 

q3-l __ - 11 - 3nAi;'L = (E - Z f n i l )  'In 

'In = 11 [F: - z,;.l) ' l o  = P* 6-1) 30. 
and 7 1 - 1  

r:-o 

after which the  degree of e r r o r  is  r e a d i l y  estimated. 

Using the  s p e c t r a l  no ta t ion  

we obta in  

/ lo  89 

where the  g rea t e s t  value of 1 
of t h e  real axis  

p ( X ) l  is taken on the  segment [m, M] n 

9=(ii) = (1 - a,).) (1 - zl?-) . . . (I - an-zi.). 

How are  the  numbers CLk t o  be chosen? It is known from poly- 

nomial theory the  est imate  (1.2) i s  bes t  i f  a l l  the  roots  of the  

polynomial P,(A) a re  located i n  the i n t e r v a l  [m, MI, so t h a t  

Various methods propose d i f f e r e n t  ways of determining the  numbers 

ak and the  polynomials P,(X). An exposit ion of these  i t e r a t i o n  

methods may be  found i n  the  monograph by D. K. Faddeyev and V. N. 

Faddeyeva (Ref. 1 ) .  

I n  the  method of s teepes t  descent, ak i s  se lec ted  from the  
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i s  provided by processes i n  which sequences of orthogonal poly- 

nomials,with a ce r t a in  d is t r ibu t ion  function which increases only 

i n  t h e  segment [my MI, are u t i l i z e d  as the polynomials P,(X). Two 

of these  methods have been s tudied i n  d e t a i l  - t he  method i n  which 

Chebyshev polynomials with the  least deviat ion from zero are used 

as Pn(X) and the  method of moments [see (Ref. 2), the minimum 

i t e r a t i o n  method], i n  which the  spec t ra l  function of operator  A is  

the  d i s t r i b u t i o n  function. 

The la t ter  group of methods no longer permits t h e  use of the  

simplest algorithm described by formula (1.1). 

W e  m u s t  r e s o r t  t o  t he  construction of  more complex algorithms 

by using recurrence formulas connecting the  orthogonal polynomials. 

W e  s h a l l  show t h a t  - by assuming ak t o  equal a c e r t a i n  random 

va r i ab le  a and by using the  simplest algorithm (1.1) - w e  may produce 

an approximation sequence converging over t he  surface t o  the  solut ion.  

2. Random Polynomials 

L e t  a be a random quant i ty  and let  ag, al, ..., %... be i t s  

values obtained as t he  r e s u l t  of independent t r ia l s .  L e t  us consider 

the  random polynomial 

'9,, (I.) = (1 - ad) (I - a&) . . . (1 -a,&). 
L e t  pk = I 1 - akx I ; then we have 

In 1 s'J~ I = 2 In pk. 
k=O 

Since the  random quan t i t i e s  I n  pk have one d i s t r i b u t i o n  function 

which i s  determined by t h a t  of the  random quant i ty  a, and s ince  

these quan t i t i e s  are obtained as  t h e  r e s u l t  of independent t r ia ls ,  
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t he  conditions of the cen t r a l  l i m i t  theorem are f u l f i l l e d .  Conse- 

quently,  as n increases ,  the  d is t r ibu t ion  l a w  of In  I Pn I approaches 

t h e  normal one with a d i s t r ibu t ion  density of 

where a and D are the  mathematical expectation and the dispersion 

of  t h e  random quan t i t i e s  In  pk. 

By using the  k n m  formulas connecting the  d i s t r i b u t i o n  func- 

t i ons  , we f ind  

the  function 

that the  d i s t r ibu t ion  function I Pn(X)) approaches 

R (2)  E 0, z < O .  

W e  may now readi ly  estimate the degree t o  which the  random /lo90 

polynomial Pn(A) deviates  from zero. 

t he  probabi l i ty  t h a t  I Pn ( A )  1 > E , when n is  la rge ,  equals 

Spec i f ica l ly ,  f o r  any E > 0 

m 

or ,  by using the Laplacian function 

w e  f i n a l l y  obtain 

. x  a (2) =; - 2 \ e-f'dt, 
v-3. 

0 

In order t h a t  t he  probabi l i ty  [ t h a t  t h e  polynomial Pn(X) w i l l  

deviate  from zero] may approach zero as n increases ,  it i s  necessary 

and s u f f i c i e n t  t h a t  t he  mathematical expectation 

a = E  [In11 - a n / )  

be less than zero. 

3. Random I t e r a t i o n  Process 

W e  must now choose f (x) ,  t he  d i s t r ibu t ion  densi ty  of t h e  random 
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quant i ty  a, so t h a t  the  successive approximations % [determined i n  

algorithm (1.1)] w i l l  converge i n  probabi l i ty  t o  the  desired solut ion.  

F i r s t  of a l l ,  by v i r t u e  of condition (1.3), f(x) d i f f e r s  from zero 

only i n  the  segment [ 1 / M ,  l / m ] .  The mathematical expectation and 

dispers ion of I n  p a r e  

(3.1) a = In Lz - 1 I f ( x )  dz, 
11-fif 

um 

1/ .v 
D = S [ ~ n  I AX - I 1- up] (x )dz .  

(3.2) 
Let  us discuss one of t he  possible methods f o r  s e l ec t ing  the  

funct ion f (x ) .  

assuming anything about the spec t ra l  d i s t r i b u t i o n  of operator A 

wi th in  [m, M I ,  it is na tu ra l  to  require t h a t  the  mathematical 

expectat ion a - which character izes  the  convergence r a t e  of the  

process - be independent of A. This requirement leads us t o  the  

Since w e  are forming a universa l  algorithm without 

homogeneous, s ingular ,  i n t e g r a l  equation 

l:L 
whose so lu t ion ,  taking the  normalization 

= 0. 

condition i n t o  account 
i m  

r f (2) d x  = 1 
1, if 

gives the desired d i s t r i b u t i o n  density 
i 

m 6 z G M ;  f = x r  r/(i - m r )  (illr - I) * 
1(z) = 0 nne I m ,  icf]. 

In  order not t o  i n t e r r u p t  t h e  discussion, w e  s h a l l  postpone the  

not e n t i r e l y  elementary invest igat ion of i n t eg ra l s  (3.1) and (3.2) 

u n t i l  the  end of the  paper. 

of the  computations. The mathematical expectat ion can be accurately 

computed: 

We s h a l l  merely present  here  the  r e s u l t s  
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( 3 . 3 )  
while the  dispers ion i s  estimated / lo91 

Let us pass on t o  an evaluation of the convergence of approxi- 

mate solut ions.  

value D i n  segment [m, MI. 

From formula (1.2) and (Z.l), w e  can readi ly  der ive t h e  following 

W e  s h a l l  use d t o  designate t h e  g rea t e s t  dispers ion 

It is  a l so  estimated by inequal i ty  ( 3 . 4 ) .  

probabi l i ty  estimate of the  e r ror :  

where 

Defining t h e  confidence coef f ic ien t  as y and t h e  necessary accuracy 

as E, w e  may f ind  XI from the  following equation by using probabi l i ty  

i n t e g r a l  tables:  
1 - c€J ( X I )  = T, 

a f t e r  which n ,  the  number of necessary approximations, is  found 

from t h e  equal i ty  

Since Xi > 0, approximate solut ions - which are r e l i a b l e  t o  a 

c e r t a i n  extent  - begin t o  be derived only beginning with values of 

n which s a t i s f y  the inequal i ty  

I n  p rac t i ce ,  the  so lu t ion  is found as follows. Successive 

approximations are derived from algorithm (1.1): 

zn+l= Xn + an (f - A z &  
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The values of t he  random quant i ty  l/%, which has the  d i s t r i b u t i o n  

densi ty  
1 

r (2) = 9 m d = < l H ,  x V(Z - m) (Af - x) 
may be  computed from formula 

1 A I - m  A t  + m 
an 2 '  
-- 2 C O S J G ,  +- -- 

where Bn are values of t h e  random quantity 8 uniformly d i s t r ibu ted  

i n  t h e  in t e rva l  [0, 11. 

W e  would l i k e  t o  note  a remarkable property of t h e  function r (x)  

[see (Ref. 3)] .  I f  i n  segment [my M I  the  function p(x) i s  almost 

everywhere grea te r  than zero and P,(x) i s  a sequence of orthogonal 

polynomials such t h a t  

m 

and i f  w e  introduce the  d i s t r ibu t ion  function of the  zeros,  &(XI 
[which jumps by a pos i t i ve  value l / n  a t  every root  of  t he  polynomial 

Pn(x)], there is  a s ing le  d i s t r ibu t ion  l i m i t  funct ion of t he  zeros 

Ji(x), which i s  i d e n t i c a l  f o r  a l l  p(x) and towards which the  sequence 

03 
of Jin(x) converges, and 

c 

9 (z) = \ r (r) dz. 
m 

Thus, the  l i m i t  function of the zero d i s t r i b u t i o n  of t he  

orthogonal polynomials - including, of course, t h e  Chebyshev poly- 

nomials - coincides with the  zero d i s t r ibu t ion  funct ion of t h e  

random polynomials introduced by us. 

4. Calculation of In t eg ra l s  

I n  order t o  compute the  mathematical expectation (3.1) 

/lo92 
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l e t  us examine the  function of t h e  complex var iab le  
In (kz - i) 

F.(z) = z (i - mz) ( M z  - I) 

and contour L represented i n  the  Figure. The branching points  of 

F(z) are located a t  poin ts  1/M, l / A ,  l / m  and the  pole  of t h e  f i r s t  

order  is  located at zero. 

funct ion so t h a t  F = i n  region (1) of contour L, 

Fixing the branch of the many-valued 
1nlAx - 11 

XJ (1  - lnx) (Mx - 1) 

In  { A X -  1 I + i n  

XJ (1 - mx) (Mx - 1 )  we s h a l l  obtain F = i n  region (2) ;  

I n  I A X -  1 I + i s  

XJ (1 - mx) (Mx - 1) 

In  I AX - 1 I + 2 i n  

XJ (1 - mx) (Mx - 1) 
F t -  i n  region (3) ; F = - 

In I X X  - 1 I 
(mx - 1) (Mx - 1)  

i n  region (0); and + i n  region (4); F = 

I n  I AX - 1 I + 2ir 
X J  (mx - 1) (Mx - 1) F = = + i  i n  region ( 5 ) .  The remainder a t  zero 

equals n. Thus, we have 

F ( 2 )  dz = W i .  s L 
Lett ing the  radius of t he  c i r c l e  approach i n f i n i t y  and equating 

the  real p a r t  of the  i n t e g r a l  t o  zero, w e  ob ta in  

9 
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The last  in t eg ra l  i s  tabulated,  and a calculat ion of i t  r e su l t s  i n  

formula (3.3). 

A computation of the  in tegra l  along the  same contour from the  

function 

leads t o  the  equal i ty  

The f i r s t  i n t eg ra l  on the  r igh t  does not  exceed  IT^ fo r  m I A 5 M, 

while the  second may be expanded in  series i n  powers of The 

estimate (3.4) i s  obtained from this.  

/lo93 
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